
SUPPLEMENTAL FILES
Supplemental files outline The Supplemental files are divided in two parts, namely, details on the methods and supplementary
benchmarks. Some explanations will be given in the text below, and we provide concrete examples in Supplementary Boxes
that can be found in the end of the document. First, following the main text’s organization, details on relevant k-mer structures
(hash-based, BWT-based) and compression are given (Supplemental Boxes S1-4). Then, we give more insights about some of
the set of k-mer sets approaches. In particular, we provide a lower-level description of structures/features that did not appear
in the main document. E.g., examples of the BFT and RAMBO structures are given, as well as comparisons between specific
approaches (Supplemental Boxes S5-8). Complexities are outlined in Supplemental Table S3. In the Supplemental Benchmark
section, we provide the full benchmarks (Supplemental Tables S1 and S2) extracted from the different papers that led to Table
3 in the main document.

Details on the methods..

k-mer index data structures..

Bloom filters, CQF and Othello hashing Examples are presented in Supplemental Box S1.

De Bruijn graph and compacted de Bruijn graph Instances are shown in Supplemental Box S2.

BOSS: BWT-based De Bruijn Graphs The Burrows Wheeler Transform is a text transformation algorithm. It receives a
sequence as input, and rearranges its characters in a way that enhances further compression. The transformation is reversible,
thus the original sequence can be decoded. BOSS rearranges k-mers to represent the De Bruijn graph in a similar way.
Here, we briefly show how the BOSS scheme works. To begin we describe the following simple — but not space-efficient —
representation of a DBG: take each unique (k+1)-mer, consisting of a vertex concatenated to the label of an outgoing edge, and
sort those (k+1)-mers according to their first k symbols taken in reverse order. The resulting sorted list contains all nodes and
their adjacent edges sorted such that all outgoing and incoming nodes of a given node can be identified. Thus, it is a working
representation, in that all graph operations can be performed, but is far from space efficient since (k+ 1) symbols need to be
stored for each edge. Next, we show that we can essentially ignore the first k symbols, which will lead to a substantial reduction
in the total size of the data structure.
First, we make a small alteration to this simple representation by padding the graph to ensure every vertex has an incoming path
made of at least k vertices, as well as an outgoing edge. This maintains the fact that a vertex is defined by its previous k edges.
For example, say k-mer CCATA has no incoming edge; then we add a vertex $CCAT and an edge between $CCAT and CCATA,
then between $$CCA and $CCAT, and so forth. We let W be the last column of the sorted list of (k+ 1)-mers. Next, we flag
some of the edges in the representation with a minus symbol to disambiguate edges incoming into the same vertex – which we
accomplish by adding a minus symbol to the corresponding symbols in W . Hence, W is a vector of symbols from {A, C,
G, T, $, -A, -C, -G, -T, -$}. Next, we add a bit vector L which represents whether an edge is the last edge, inW ,
exiting a given vertex. This means that each node will have a sequence of zero-or-more 0-bits followed by a single 1-bit, e.g.,
if there is only a single edge outgoing from a node then there is a single 1-bit for that edge. Overall the representation consists
of a vector of symbols (W), a bit vector (L) implemented using a rank/select Raman et al. (2002) data structure, and finally an
array that records the counts of each character. It may seem surprising but these three vectors provide enough information for
representing the DBG and supporting traversal operations. We refer the reader to the original paper for a detailed discussion.
Lastly, we note that this representation, which is referred to as BOSS, is due to Bowe et al. Bowe et al. (2012) and was extended
for storing colors Muggli et al. (2017) (see Supplemental Box S3 for an example).

Details on compression. To efficiently represent a n× c color matrix, over n k-mers across c datasets, different schemes have
been proposed. A color class is a set of colors common to one or multiple k-mers. It can also be seen as a bit vector, or
alternatively, a row of the color matrix. Supplemental Box S4 presents examples of the different techniques: the delta-based
encoding used in Mantis+MST (a), the RRR/Elias-Fano coding (b) used e.g. in Mantis and VARI, the lossy compression using
BF from Metannot (c), the BRWT principle (d), and the three strategies used in SeqOthello (e).

Set of k-mer sets details.

Color aggregative methods. We first show how the different color aggregative methods combine k-mer sets, indexing tech-
niques and color strategies in Supplemental Box S6.
BFT significantly differs from other methods: an example is shown in Supplemental Box S5. In a BFT, k-mers are divided into
a prefix and a suffix part that are recorded in a burst trie. Prefixes are further divided into chunks, which are to be inserted into
the root or inner nodes of the tree. Suffixes are in the leaves. Queries start at the tree root and progress through the path that
spell the query string. In practice, each leaf stores a set of tuples: some k-mer suffixes along with their corresponding color
classes. Bloom filters are also used in the inner nodes, to increase query speed by quickly checking the presence of a chunk.

Tool Data Processing Time (days) Max Ext. Memory (GB) Time (h, wallclock) Peak RAM (GB) Index Size (GB)
SBT 3.5b 300a 55b 25b 200a

AllSomeSBT 3.5a 600a 25a 35b 140a

SSBT 3.5a 600a 55a 5b 20a

HowDeSBT 2.5a 30a 10a N/A 15a

Mantis 130a 110d 20a N/A 30a

SeqOthello 3.5b 190b 2b 15b 20b

BIGSI N/A N/A N/A N/A 145c

Supplemental Table S1. Space and time requirements to build human RNA-seq indices. The best result for each column is shown
in green. a refers to the HowDeSBT article, b to the SeqOthello article, c to the BIGSI article, and d was obtained through personal
correspondence with R. Patro.

Note that the above description of BFT does not capture the full complexity of the data structure, and should only be used to
build an initial intuition.

k-mer aggregative methods In Supplemental Box S7, we present indexing and query details, in a similar fashion than Box
3 in the main text, but more in depth. We show the index construction and query steps in SBT, BIGSI, and show how COBS
improves on BIGSI’s representation while keeping the core idea.
The false positive rate of a BF is monotonically increasing in m/n, where m is the number of k-mers in the dataset and n is the
number of bits in the BF. BIGSI uses the same size n for all the BFs, thus the false positive rates of the BFs differ depending
on how many k-mers are in the corresponding dataset. COBS avoid this by storing BFs of size adapted to the corresponding
dataset.
Then we illustrate contrasts between the k-mer-aggregative methods in Supplemental Box S8. For the different flavors of
SBTs, different strategies are used to store information in each node. Supplemental Box S8 shows the improvements in bit-
vector representation first brought by SSBT/AllSomeSBT, then by HowDeSBT. In a second Figure, BIGSI, Dream Yara and
RAMBO strategies for indexing Bloom filters are compared. In the following, we outline the very recent RAMBO’s method.
An example of RAMBO structure is shown in Supplemental Box S8, bottom right panel. RAMBO builds a matrix of C columns
and T rows. Cells of the matrix are BFs. At construction, a given dataset is assigned to one cell per column. The corresponding
BFs in those cells are each updated so that all the k-mers of the dataset are inserted into each of those BFs. This creates
some (necessary) redundancy in the structure. Since several datasets can be assigned to a same cell, BFs become union BFs by
informing for the presence/absence of k-mers in more than one dataset. A query is performed on the rows, each union BF giving
a row-wise union of sets where the query could be present. The final sets containing the query are deduced by performing an
intersection of the different set unions.

Supplementary benchmarks. In Table S1, we show the results of different methods on a collection of 2585 of human blood,
brain and breast RNA-seq datasets. This collection was first used in the original SBT paper and became a de facto benchmark
for the other methods. It contains approximately 4 billion distinct 20-mers. Each reviewed article had its own, different, set of
methods for performing a benchmark using this dataset. Here we assembled the results of three different benchmarks performed
in 2018 and 2019, for which the important parameters (k value, abundance threshold) were identical. Even if hardware settings
where different in the three studies, the presented trends (in particular, impacts on disk and RAM) remain accurate. The data
processing time column refers to the time necessary to convert the original sequence files to the k-mer set indices (computation
of Bloom filters, CQF with Squeakr, Othello). The maximum external memory column corresponds to the peak disk usage
when building the index. The time column is the time required to build the set of k-mer sets index. The index size column is
the final index size. BIGSI is not a compressed index, but the authors had explored the possibility to compress using snappy
(https://google.github.io/snappy/). Parameters used for the different methods were θ= 0.9 and BF size of 2.109

for the SBT methods, k = 20 as the k-mer size for all methods, and 34 "log slots" for Mantis from the estimation of their paper.

In Table S2 we present the space and time required to build those data structures on bacterial datasets. The table is divided into
two sub-tables that correspond to two benchmarks from the literature. Contrary to the human RNA-seq experiments, these two
benchmarks were not reconcilable, in terms of used datasets and parameters, thus we chose to present them separately. The
first one shows results from Bingmann et al. (2019), containing 1,000 bacterial, viral and parasitic whole-genome DNA files,
obtained from the BIGSI paper (http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/).
The second one is from Muggli et al. (2019) and contains 4,000 datasets 16,000 Salmonella strains (NCBI BioProject PR-
JNA183844).

https://google.github.io/snappy/
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/

Tool Max Ext. Memory (GB) Time (h, wall clock) Peak RAM (GB) Index Size (GB)
Table (a)
SBT N/A 1.9 11 20
SSBT N/A 8.0 1.5 3.3
AllsomeSBT N/A 2.0 7.1 21
HowDeSBT N/A 21 108 1.9
BIGSI N/A 1.2 247 28
COBS N/A 0.01 2.6 3.0
SeqOthello N/A 0.7 12 4.4
Mantis N/A 0.4 88 16
Table (b)
Vari 1,000 11 136 51
Vari-Merge 1,000 12 52 51
Rainbowfish 1,000 11 136 51
BFT 900 52 120 99
Multi-BRWT 1,300 42 156 1,300
Mantis+MST 36 12 52 51

Supplemental Table S2. Space and time required to build indices on bacterial datasets. Table (a). The table shows results from a
benchmark done in the COBS article Bingmann et al. (2019). The COBS benchmark contains 1,000 microbial DNA files, consisting of
various bacterial, viral and parasitic WGS datasets (in the ENA as of December 2016) with an average of 3.4 million distinct k-mers
per file. No cutoff on k-mer abundances was used before constructing the data structures. In the COBS benchmark, k was set to 31.
In the table, COBS denotes for the COBS compact index that allows more than one batches of BFs. Table (b) shows results from
the Vari-Merge article Muggli et al. (2019) The Vari-Merge benchmark contains 4,000 datasets totalling 1.1 billion distinct k-mers from
16,000 Salmonella strains. Note that it has more genomes than the COBS benchmark, but it possibly contains a lower variability in
k-mer content. In the Vari-Merge benchmark, methods were run with k= 32, with the exception of BFT that was run with k= 27. When
applicable, other parameters (for both Table (a) and (b)) were set to their defaults.

construction query
SBT O(n× b)∗ O(Q×h)
VARI O(N × log(N)) O(Q×n)
Mantis O(N ×n) O(Q×n)
SeqOthello O(N ×n) O(Q×n)
BFT O(N ×n) O(Q×n)
BIGSI O(n× b) O(Q×n)
RAMBO unreported O(Q×

√
n× log(n))

Supplemental Table S3. Time complexities for the construction and query of the main approaches. N is the total number of distinct
k-mers, n is the number of datasets, Q the query size (number of k-mers). We denote by b the number of bits in a Bloom filter, and h
the number of datasets that contain at least θ% of Q k-mers. We consider k as a relatively small constant (around 21-63). ∗ This time
complexity is derived from Theorem 1 in Harris and Medvedev (2020) with the assumption that the size of the Bloom filter b is roughly
O(N/n). Note that there may be an additional complexity cost for building the topology of the tree through clustering. We note that in
the worst case (majority of k-mers present in all datasets), the query complexities of SBTs would be O(Q×n).

Supplemental Box S1. Hashing techniques

Bloom filters The example filter has a set of two functions f and g. In (1) a is inserted by putting 1s at positions 2
and 4 indicated by both functions. (2) b is inserted similarly. (3) x is queried, g(x) giving a 0 we are certain that it is not
present in the filter.

a
0

1

1
0

0 b
1

1
0

0 x
1

1
0

0

1 1

 f

 g

 f

 g
 f

 g

(1) (2) (3)

f(x) AND g(x)=0

⇒ x not in S1

S1={a,b}, x∉S1

BF

Counting Quotient filter intuition Element a and b are decomposed into a1a2 and b1b2. a1, b1 are quotients, and a2,
b2 are remainders. (1) During a’s insertion, the quotient is used to find the position of the element in the filter, and a2 is
stored. The count is associated (second column). (2) similar operation for b. (3) a is re-inserted, leading to a count of 2.

a=a1a2

0
 a2

0

0

0
 f(a1)

(1) (2) (3)
0

1

0

0

0

b=b1b2

0

a2

0

b2

0

 f(b1)

0

1

0

1

0

a=a1a2

0
 a2

0

b2

0

0

2

0

1

0
 f(a1)

CQF

Othello Hashing intuition In the example below (figure), we will focus on the case where two sets S1 and S2 are
hashed. A larger number of sets can be dealt with. Othello hashing uses two hash functions, denoted here by f and h.
The method maintains two arrays B1 and B2, see panel (1). In the case of storing two sets, B1 and B2 are binary arrays.
Elements from S1 will be mapped to one value x1 in B1 and another value x2 in B2 such that x1 6= x2. Conversely,
elements from S2 will correspond to identical values ((x1,x2) = (0,0) or (1,1)). In (2), the element a from S1 is hashed
with f and inserted in B1 at the position given by f and similarly with h and B2. A different value will be stored in B1
and in B2 (0 and 1). The lines between those two values visually represent their association to a. (3) b is hashed the
same way than a, ensuring again that two different values are associated to b. (4) Element c is inserted, here we cannot
ensure two different values are associated to c without having a contradiction. Thus b’s 0 in B2 is modified (in red). (5)
The values associated to b must differ, so in B1 we modify the 1 associated with b to a 0. (6) x,y,z are inserted, this
time they must be associated to pairs of identical elements as they belong to S2. (7) y is queried by hashing it with f
and h and by checking if the associated values are identical (y in S2) or different (y in S1).

S1={a,b,c}

S2={x,y,z}

a

a

0

1 a

0

1

0 b

1b

 ca

a

0

1

1 bc

1b

 ca

a

0

1

1 bc

0b

 xca

a

0 1 bc

0yb
0 x

0 y

 z 1 1 z

(1) (2) (3)

(4) (5)

(6)
(7) query y

0

1

1

0
0

0

1 1

0

0

 f
 h

f(y) XNOR h(y)=1 ⇒ y∊S2

1

Othello

hashing

a
 f

 h

B1 B2

y
y

Supplemental Box S2. De Bruijn graphs

In the example below, the first graph is a regular De Bruijn graph from the 5-mers CCTGA, ACTGA, CTGAG, TGAGA,
GAGAA, AGAAC, GAACC, AACCT, AACCG. The node CTGAG has two ingoing edges and only one outgoing,
GAACC has two outgoing edges and only one in-going, any other vertex in-between connecting CTGAG and GAACC
has only one in-going and outgoing edge. Thus this red path can be compacted.
The second graph is the resultant compacted De Bruijn graph. The red path becomes a single red node, by concatenating
CTGAG, A, A, C and C. It keeps the same connections than the two flanking nodes. Each resultant node is referred to
as a unitig.

ACTGA
CTGAG TGAGA GAGAA AGAAC GAACC

AACCG

CTGAGAACC

De Bruijn graph

CCTGA AACCT

compacted De Bruijn graph

ACTGA

CCTGA

AACCG

AACCT

For representing the nodes, the first representation uses 5× 9 nucleotides, and the compacted representation only uses
5×4+9 nucleotides.

Supplemental Box S3. BOSS graph structure

We describe the BOSS data structure, as per its original flavor Bowe et al. (2012). We build a BOSS from two sequences
CAGCCGA and CAGTCGA with k = 3. Part (2) is the De Bruijn graph from these sequences (no reverse-complements
are considered here). In this representation, each vertex contains a 3-mer, and an edge represents a 4-mer existing in the
original sequences, the label of the edge being the last nucleotide of this 4-mer. (3) represents the same information, but
with the constraint that any nodes not containing $ must be preceded by k vertices (3 vertices) and must have at least an
outgoing edge. Thus supplementary nodes with the padding ’$’ symbol are added. (4) is the list of (k+ 1)-mers in the
(3) graph.

cagccga
cagtcga

cag agc gcc ccg cga

agt gtc tcg

 c c g a

 t c g a

$$$ $$c $ca

 c a g $

$$$c, $$ca, $cag,
cagt, cagc, agtc,
gtcg, agcc, tcga,
gccg, ccga, cag$

$$$
$ca
cga
$$c
gcc
agc
gtc
cag
cag
ccg
tcg
agt

cag agc gcc ccg cga

agt gtc tcg

 c c g a

 t c g a

nodes

edges
labels

c
g
$
a
g
c
g
c
t
a
a
c

1
1
1
1
1
1
1
0
1
1
1
1

$$$
$ca
cga
$$c
gcc
agc
gtc
cag
cag
ccg
tcg
agt

c
g
$
a
g
c
g
c
t
a
a-
c

1
1
1
1
1
1
1
0
1
1
1
1

0
1
2
3
4
5
6
7
8
9
10
11

0
1
2
3
4
5
6
7
8
9
10
11

0
1
2
3
4
5
6
7
8
9
10
11

$ 0
a 1
c 3
g 7
t 11

c
g
$
a
g
c
g
c
t
a
a-
c

1
1
1
1
1
1
1
0
1
1
1
1

0
1
2
3
4
5
6
7
8
9
10
11

$$$
$ca
cga
$$c
gcc
agc
gtc
cag
cag
ccg
tcg
agt

c
g
$
a
g
c
g
c
t
a
a-
c

(1) (2)

(3)

(5) (6) (7) (8)

(4)

(5) These (k+1)-mers are listed by lexicographic order by reading them in reverse starting from the kth nucleotide to the
first (ties are broken by the k+ 1-th nucleotide). This gives a matrix of nucleotides, the last nucleotide of each (k+ 1)-
mer being in a separate red column. Each line of the matrix represents a node label in the graph, and the red vector
represents the edge labels. (6) In order to denote nodes that have several outgoing edges, a new vector (blue) is used. 1s
indicate the last occurrence of a given node, while 0s mark its previous occurrences (they are necessarily contiguous).
Here node CAG has two outgoing edges, one labeled by C (green, marked 0) and the other by T (orange, marked 1).
Several edges entering the same node share the same label, all but one are marked using a −, as for yellow/blue labels.
(7) Only the last column of the matrix will be kept in the BOSS. We retain the rank of each first symbol (in red): $
appears at rank 0, A at rank 1, C at rank 3, (8) The final information in the BOSS structure. From these tables, DBG
operations such as going forward, backward from a given node are shown to be possible in Bowe et al. (2012), but we
do not describe them here.

Supplemental Box S4. Details on compression of bit matrices

Color classes can be further compressed. We present here some of the known techniques.

011001011000111010... 1011001111

(b) 1 dimension bit encoding

 (Elias-Fano, RRR, ROAR)

≪ n x c

01100100

01100101

00010000
10000110

00010000

 (d) 2 dimensions bit encoding

110
111
111

≪ n x c

<0143>

<1520>

<3,7>

01100101

010011

110100
101001

110101

<3,4>

01111101

<0,3,5,6>

<0,1,2,6>

(c) probabilistic color classes

 in Bloom filters

(a) delta-based encoding

(e)

01100101

10000111

01111101

01100101

m < n

b < c

 BF
BF
BF
BF

(sizes of alternating 0s and 1s runs)

(positions of 1s)
 (regular BV)

 n x c

10000111

00010001

01111100

01100101

(e') further compression in

wavelet trie

10000111
00010001

Delta-based encoding (a): Differences between rows in the matrix are encoded. One can e.g. encode the (column-wise)
differences between the current row and the first row as 1’s, and similarities with 0’s. This results in a sparser matrix
that can be further compressed, e.g. using (b). In Figure (a), grey zones mark similarities between pairs of vectors. The
purple vector is chosen as a reference, and positions of differences with the orange, yellow and blue vectors are recorded
into separate lists. Mantis + MST uses this technique, and it also one of SeqOthello’s strategies.
Bit encoding techniques (b,d): When encoding a color matrix: rows of the color matrix are first concatenated. The
resulting bit vector is then compressed losslessly into a shorter bit vector. In (b), rows of a color matrix (not displayed)
are concatenated then compressed by, e.g., finding runs of 0s (denoted in grey) and yields a smaller vector (red vector in
the figure). Many tools implement this idea (Vari, Mantis, Rainbowfish, BiFrost, the SBTs). In (d), rectangular blocks of
0s (denoted in grey) in the color matrix are marked and removed. This allows 2-dimensional compression (red matrix),
by storing the positions of removed blocks. This solution was proposed by Multi-BWRT.
Using (e), such representations can be further compressed.
Probabilistic color classes (c): In Metannot, instead of recording the exact presence/absence of a k-mer within each
dataset, colors are stored in a Bloom filter of size b < c. Then, the retrieval of color(s) associated with a k-mer becomes
probabilistic (i.e., a color may be wrongly given to a k-mer).
Approximate color classes with hybrid compression (e) Nearly identical rows are grouped, and a representative is
chosen for each group. Then, depending on whether bit-vectors associated to the color classes are sparse (small amount
of 1s) or dense (high amount of 1s), different compression schemes are used. SeqOthello and BiFrost use this strategy
(the example shows SeqOthello’s solution). SeqOthello proposes to group similar color profiles, then uses a suitable
compression technique depending on the bit-sparsity of each group. A list of integers represents the bit-vector when
it has a few 1s (integers are the positions of the 1s). With many 1s, run-length encoding alternatively encodes the
consecutive number of 0s and 1s. If the bit-vector has roughly the same amount of 0s and 1s, no compression is used.
BiFrost differs a bit, by adapting different bit-encoding techniques as (b) to the different vector sparsities.

Supplemental Box S5. Bloom filter trie

A Bloom filter trie is a tree that stores k-mers in its leaves. A leaf can store at most t k-mer, otherwise it is "burst" (i.e.
transformed) into a sub-tree. The new sub-tree consists of a node v and two or more children of v. All prefixes of length
p from the sequences in the original leaf are stored in v. All suffixes of length k−p that follow the i-th prefix in v are
stored in the i-th child of v.
We now show how to store the following k-mers in a BFT: AGGCTAGCTAA, AGGCAAACTAT, AGGCTAGGATG,
CTTATCCGACT, AGGTTCAGAAT, AGGCTACCCCC, with t= 4 and p= 3. In Panel (1), the first four k-mers can be
inserted in a single leaf, since t= 4. (2) The fifth k-mer AGGTTCAGAAT (red) cannot be inserted in the leaf, requiring
a burst operation. (3) To perform the burst, the prefixes of size p of the five k-mers are stored in the root. Each prefix has
a pointer to its corresponding subtree. Suffixes of length k−p are stored in the leaves. (4) Inserting AGGCTACCCCC
(green), it is put in the left leaf as its prefix is AGG. This induces a burst of the left leaf which is performed on Panel (5).
(6) The tree is not represented explicitly, but instead, binary vectors are introduced to optimize for space. In addition
Bloom filters are added in intermediate nodes to speed up queries. Note: k-mers are stored as tuples with their color
class.

AGGCTAGCTAA,AGGCAAACTAT,AGGCTAGGATG,CTTATCCGACT,AGGTTCAGAAT,AGGCTACCCCC

AGGCAAACTAT
AGGCTAGCTAA
AGGCTAGGATG
CTTATCCGACT

AGGCAAACTAT
AGGCTAGCTAA
AGGCTAGGATG
CTTATCCGACT

AGGTTCAGAAT

AGG CTT

CAA CTA TTC ATC

CCCCC
GCTAA
GGATG

ACTAT CGACT

AGG CTT

CAAACTAT
CTAGCTAA
CTAGGATG
TTCAGAAT

ATCCGACT

AGG CTT

CAAACTAT
CTAGCTAA
CTAGGATG
TTCAGAAT

ATCCGACT

CTACCCCC

AGAAT

(1) (2) (3)

(4) (5)

(6) binary representation

Supplemental Box S6. Details on building blocks in color aggregative methods.

Here we give details on the color aggregative methods strategies, and in particular the k-mer set implementations.

 compacted De Bruijn graph
 (a set of unitigs)

 k-mer

position
in unitigs

color class ID
(for the whole graph)

01100101

00010001
10000111

01111101

0
1
2
3

1 set of
color classes

MPHF

 partitionned compacted
 De Bruijn graph
 (sets of unitigs in buckets)

k-mer

position
in bucket

color vector ID
(for the whole graph)

1 color matrix

bucket
MPHF

 bucket ID

minimizer

01101001
10001101
00010001
00010001
01101001

 k-mer

positions
in unitigs

color vector ID
(for each unitig)

minimizer

01111011
01111011
00111011
01111011
01000010
01000011
11000011
01000011
01100100
01000010
01100010
01100010

n color matrices

k-mer set

MPHF

color indexing

Pufferfish

BLight

Bifrost

 CQF
 (a set of k-mers)

Mantis

color class
ID

01100101

00010001
10000111

01111101

0
1
2
3

1 set of
color classes

CQF

 k-mer

 Othello
 (an approximate
 set of k-mers)

Othello

bucket
ID

Othello

 k-mer

Othello

kmer ID
in bucket
 10000111

...

...

<0,5,2,.>

<1,4..>

...

...

0

i

n

approximate color classes
in several buckets

 BWT
 (a rearranged text
 containing k-mers)

 hash table
 (a set of k-mers)

 Bloom filter trie
 (a set of k-mers)

color class
ID

burst trie

 k-mer

 partitionned compacted
 De Bruijn graph
 (sets of unitigs in buckets)

VARI

 BWT
 (a rearranged text
 containing k-mers)

Rainbowfish

Metannot

 hash table
 (a set of k-mers)

Multi-BRWT

BFT

position
in BWT

BWT

vector
of color IDS

color ID

 k-mer

1 color matrix

01101001
10001101
00010001
00010001
01101001

position
in BWT

BWT

vector
of color IDS

color
class ID

 k-mer
 01100101

00010001
10000111

01111101

0
1
2
3

1 set of
color classes

01100101

00010001
10000111

01111101

0
1
2
3

1 set of
color classes

 k-mer

color class
ID

hash table

01100101

00010001
10000111

01111101

0
1
2
3

1 set of
color classes

 k-mer

color class
ID

01100101

00010001
10000111

01111101

0
1
2
3

1 set of
color classes

hash table

In the Figure above, the terms compacted DBG, unitigs, BWT and MPHF are defined in the main text.
Some of the techniques use minimizers. While there exist multiple definitions in the literature, here a minimizer is the
smallest l-mer that appears within a k-mer, with l < k. "Smallest" should be understood in terms of lexicographical
order. For example in the k-mer GAACT, the minimizer of size 3 is AAC, as all other l-mers (GAA, ACT) are higher in
the lexicographical order. Minimizers are used here to create partitions of k-mers.Such partitioning techniques reduce
the footprint of position encoding.

Supplemental Box S7. k-mer aggregative methods

Index construction In SBT (Panel (a) below), all BFs in leaves are have the same length, which is related to the
estimated total number of distinct k-mers to index. The union BFs of intermediate nodes in the tree are constructed by
applying a logical OR on BFs of the children BFs.
In BIGSI (Panel (b)), all BFs must also have the same size. COBS uses the same principle but Bloom filters do not all
have the same size.

B
F(d

1)
B
F(d

2)
B
F(d

3)

B
F(d

n)

B = number
 of datasets

BF

size
01100101

10010000

10100100

00111100

10110100

01111101

11111101

BF(d1)

BF(d2)

BF(d3)

BF(d4)
BF(d1∪d2)

BF(d3∪d4)

B
F

(d
1
∪

d
2
∪

d
3
∪

..
.d

n
)

 number
 of datasets

(a) (b)

Queries Here we show in more details how queries are performed in SBTs and BIGSI (see Box 3 in the main text for
a more abstract sketch). In the Figure below (left figure), we consider a single hash function f , as it was presented in
HowDeSBT’s paper for instance, and θ = 2/3. For BIGSI (right figure), we present the query step for one k-mer and
three hash functions (f , g, h). Note that usual queries are composed of more than one k-mer and aggregate the k-mers
results. A given k-mer is hashed, leading to one or several rows to lookup. In Figure (b) below, the query is performed
on the green rows. Each queried row informs on the datasets that may contain the query k-mer. All the returned bit
vectors are then summarized vertically into a single vector, using a logical AND operation. Positions yielding 1s after
this operation correspond to datasets that contain the k-mer (in the Figure example, the k-mer is present only in dataset
1). (c) The same principle is used when matrices of several sizes contain the BFs. Hashes are simply adapted to the
different sizes using a modulo.

B
F(d

1)
B
F(d

2)
B
F(d

3)
B
F(d

4)

1011
1011
1000

&

1000

ATGGAT

presence in d1

f
g

h

1 1 0 0
0 0 0 1
1 0 1 1
0 1 1 1
0 0 1 0
1 0 1 1
1 0 0 0
1 1 1 1

01100101

10010000

10100100

00111100

10110100

01111101

11111101

BF(d1)

BF(d2)

BF(d3)

BF(d4)

ATGGAT
 TGGATA

CATGGA

2/3 queried

k-mers in d3

f(a) (b)
f

f

&

presence: 3/3

presence: 1/3

presence: 3/3

Supplemental Box S8. Advanced and alternative k-mer aggregative methods

Comparison between SBT approaches For SBTs, different strategies are used to store information in each node. In
the example below, the first level of each node is a plain Bloom filter, as used in the original SBT approach. The
second level is the how+det representation used in HowDeSBT. The third is the equivalent all+ some or sim+ rem
representations used by AllSomeSBT and SSBT. The three approaches are shown in four nodes.
At some positions (marked in green), the bits will have the same value across all the nodes of the subtree. Those bits are
marked as det (determined), and when they are, the how field records their values. In the sim+ rem and all+ some
systems, such bits will have a value set to 1 in all/sim in the root node if and only if they are determined as 1. In this
node, the some/rem vector stores values such that all∪ some = BF or sim∪ rem = BF , where BF is the Bloom
filter of the node.
At the second level of the tree, new bits become determined (orange in the left subtree and blue in the right subtree).
The same rules apply. Moreover, bits that were marked in the upper levels are non informative (red boxes). They can be
removed from the structure, but their positions are recorded using an auxiliary bit vector (not shown).

111001111
---0--1--
0001-01--
0000001--
1110010--

111001111 000000111

111101111
----0--11
000010011
000000011
111101100

011101111
01-1-----
1101-00--
0101000--
0010011--

010100111
--0--0---
--1--10--
0-0-000--
0-0-001--

011101011

BF

how

det

all/sim

some/rem

BF

how

det

all/sim

some/rem

BF

how

det

all/sim

some/rem

BF

how

det

all/sim

some/rem

... ...

Comparison between Bloom filter approaches Bloom filters are grey panels in all figures below. Left: BIGSI and
COBS differences reside in the column sizes. COBS queries are as fast as BIGSI, using a system of modulos with the
different BF sizes. Middle: the DREAM-Yara index is built by interleaving the bits of each Bloom filters. Bits of the
same rank are grouped together in bins of size n. Right: each element in the RAMBO matrix is a Bloom filter (each
column of the matrix stacks complete BFs). Contrary to SBTs, RAMBO merges randomly the datasets. Queries in
SBTs are top-bottom, RAMBO queries each row and uses the intersection result.

1 co lumn

0 . .
1
1
1
0
0

0 . . 1 . . 1 . . 1 . . 0 . . 0

BIGSI 's co lumns

DREAM-Yara
n

nBIGSI 's co lumns

n

B
F

 s
iz

e

n

B
F

 s
iz

e
s

COB's co lumns

datasets :

BF merges in SBT:

...

...

...

...

...

...

BF merges in RAMBO:

rows

